Audio Source Separation

eBook - Signals and Communication Technology

185,95 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9783319730318
Sprache: Englisch
Umfang: 0 S., 14.98 MB
Auflage: 1. Auflage 2018
E-Book
Format: PDF
DRM: Digitales Wasserzeichen

Beschreibung

This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis.

The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods.

The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.

Autorenportrait

SHOJI MAKINO (F) received the B. E., M. E., and Ph.D. degrees from Tohoku University, Japan, in 1979, 1981, and 1993, respectively. He joined NTT in 1981. He is now a Professor at University of Tsukuba. His research interests include adaptive filtering technologies, realization of acoustic echo cancellation, blind source separation of convolutive mixtures of speech, and acoustic signal processing for speech and audio applications.

Dr. Makino received the IEEE SPS Best Paper Award in 2014, the IEEE MLSP Competition Award in 2007, the ICA Unsupervised Learning Pioneer Award in 2006, the Commendation for Science and Technology of Japanese Government in 2015, the TELECOM System Technology Award in 2015 and 2004, the Achievement Award of the Institute of Electronics, Information, and Communication Engineers (IEICE) in 1997, and the Outstanding Technological Development Award of the Acoustical Society of Japan (ASJ) in 1995, the Paper Award of the IEICE in 2005 and 2002, the Paper Award of the ASJ in 2005 and 2002. He is the author or co-author of more than 200 articles in journals and conference proceedings and is responsible for more than 150 patents. He was a Keynote Speaker at ICA2007 and a Tutorial speaker at EMBC 2013, Interspeech 2011 and ICASSP 2007.

Dr. Makino IEEE activities include: Member, SPS Technical Directions Board (2013-14), SPS Awards Board (2006-08), SPS Conference Board (2002-04), IEEE Jack S. Kilby Signal Processing Medal Committee (2015-), IEEE James L. Flanagan Speech& Audio Processing Award Committee (2008-11) and  Member and Chair, SPS Audio and Electroacoustics Technical Committee (1993-09 and 2013-14, respectively); SPS Distinguished Lecturer (2009-10); Chair, Circuits and Systems Society Blind Signal Processing Technical Committee (2009-2010); Associate Editor,IEEE Transactions on Speech and Audio Processing (2002-05) andEURASIP Journal on Advances in Signal Processing (2005-2012). He was the Vice President, Engineering Sciences Society of the IEICE (2007-08) and Chair, Engineering Acoustics Technical Committee of the IEICE (2006-08). He is a Member, International IWAENC Standing committee and International ICA Steering Committee; General Chair, WASPAA2007 and IWAENC2003; Organizing Chair, ICA2003; and Plenary Chair, ICASSP2012.

Dr. Makino is an IEEE Fellow, an IEICE Fellow, a Board member of the ASJ, and a member of EURASIP and ISCA.

Inhalt

Preface.- 1 Single Channel Audio Source Separation NMF; Cédric Févotte, Emmanuel Vincent, and Alexey Ozerov.- 2 Separation of known sources using non-negative spectrogram factorization; Tuomas Virtanen and Tom Barker.- 3 Dynamic Non-Negative models for audio source separation; Paris Smaragdis, Gautham Mysore, Nasser Mohammadiha.- 4 An introduction to multichannel NMF for audio source separation; Alexey Ozerov, Cédric Févotte and Emmanuel Vincent.- 5 General formulation of multichannel extensions of NMF variants; Hirokazu Kameoka, Hiroshi Sawada and Takuya Higuchi.- 6 Determined Blind Source Separation with Independent Low-Rank Matrix analysis; Daichi Kitamura, Nobutaka Ono, Hiroshi Sawada, Hirokazu Kameoka and Hiroshi Saruwatari.- 7 Deep neural network based multichannel audio source separation; Aditya Arie Nugraha, Antoine Liutkus and Emmanuel Vincent.- 8 Efficient Source separation using bitwise neural networks; Minje Kim and Paris Smaragdis.- 9 DNN based mase estimation for supervised speech separation; Jitong Chen and DeLiang Wang.- 10 Informed spatial filtering based on constrained ICA; Hendrik Barfuss, Klaus Reindl and Walter Kellermann.- 11 Recent advances in multichannel source separation and denoising based on source sparseness;  Nobutaka Ito, Shoko Araki, and Tomohiro Nakatani.- 12 Multimicrophone MMSE-based speech source separation; Shmulik Markovich-Golan, Isral Cohen and Sharon Gannot.- 13 Musical-Noise-Free blind speech extraction based on higher-order statistics analysis; Hiroshi Saruwatari and Ryoichi Miyazaki.- 14 Alternating diffusion maps for audio-visual source separation; David Dov, Ronen Talmon and Israel Cohen.- Index.

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.