Beschreibung
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar?
In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics?
This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics.
In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially providesprogress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically.
This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks.
We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Autorenportrait
Akinori Tanaka, Akio Tomiya, Koji Hashimoto
Inhalt
Chapter 1: Forewords: Machine learning and physics.- Part I Physical view of deep learning.- Chapter 2: Introduction to machine learning.- Chapter 3: Basics of neural networks.- Chapter 4: Advanced neural networks.- Chapter 5: Sampling.- Chapter 6: Unsupervised deep learning.- Part II Applications to physics.- Chapter 7: Inverse problems in physics.- Chapter 8: Detection of phase transition by machines.- Chapter 9: Dynamical systems and neural networks.- Chapter 10: Spinglass and neural networks.- Chapter 11: Quantum manybody systems, tensor networks and neural networks.- Chapter 12: Application to superstring theory.- Chapter 13: Epilogue.- Bibliography.- Index.
Informationen zu E-Books
Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.
Adobe-ID
Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig.
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
Lesen auf dem Tablet oder Handy
Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App.
Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire
Lesen auf einem E-Book-Reader oder am PC / MAC
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
Andere Geräte / Software
Kindle von Amazon. Wir empfehlen diese Geräte NICHT.
EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.
Software für Sony-E-Book-Reader
Computer/Laptop mit Unix oder Linux
Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.