Beschreibung
Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches.
Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.
Autorenportrait
Zhi-Hua Zhou is a Professor, founding director of the LAMDA Group, Head of the Department of Computer Science and Technology of Nanjing University, China. He authored the books "Ensemble Methods: Foundations and Algorithms" (2012) and "Machine Learning" (in Chinese, 2016), and published many papers in top venues in artificial intelligence and machine learning. His H-index is 89 according to Google Scholar. He founded ACML (Asian Conference on Machine Learning), and served as chairs for many prestigious conferences such as AAAI 2019 program chair, ICDM 2016 general chair, etc., and served as action/associate editor for prestigious journals such as PAMI, Machine Learning journal, etc. He is a Fellow of the ACM, AAAI, AAAS, IEEE and IAPR.
Yang Yu is an associate Professor of Nanjing University, China. His research interests are in artificial intelligence, including reinforcement learning, machine learning, and derivative-free optimization. He wasrecognized in AIs 10 to Watch by IEEE Intelligent Systems 2018, and received several awards/honors including the PAKDD Early Career Award, IJCAI18 Early Career Spotlight talk, National Outstanding Doctoral Dissertation Award, China Computer Federation Outstanding Doctoral Dissertation Award, PAKDD08 Best Paper Award, GECCO11 Best Paper (Theory Track), etc. He is a Junior Associate Editor of Frontiers of Computer Science, and an Area Chair of ACML17, IJCAI18, and ICPR18.
Chao Qian is an associate Researcher of University of Science and Technology of China, China. His research interests are in artificial intelligence, evolutionary computation and machine learning. He has published over 20 papers in leading international journals and conference proceedings, including Artificial Intelligence, Evolutionary Computation, IEEE Transactions on Evolutionary Computation, Algorithmica, NIPS, IJCAI, AAAI, etc. He has won the ACM GECCO 2011 Best Paper Award (Theory Track) and the IDEAL 2016 Best Paper Award. He has also been chair of IEEE Computational Intelligence Society (CIS) Task Force "Theoretical Foundations of Bio-inspired Computation".
Inhalt
1.Introduction.- 2. Preliminaries.- 3. Running Time Analysis: Convergence-based Analysis.- 4. Running Time Analysis: Switch Analysis.- 5. Running Time Analysis: Comparison and Unification.- 6. Approximation Analysis: SEIP.- 7. Boundary Problems of EAs.- 8. Recombination.- 9. Representation.- 10. Inaccurate Fitness Evaluation.- 11. Population.- 12. Constrained Optimization.- 13. Selective Ensemble.- 14. Subset Selection.- 15. Subset Selection: k-Submodular Maximization.- 16. Subset Selection: Ratio Minimization.- 17. Subset Selection: Noise.- 18. Subset Selection: Acceleration.
Schlagzeile
>
Informationen zu E-Books
Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.
Adobe-ID
Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig.
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
Lesen auf dem Tablet oder Handy
Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App.
Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire
Lesen auf einem E-Book-Reader oder am PC / MAC
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
Andere Geräte / Software
Kindle von Amazon. Wir empfehlen diese Geräte NICHT.
EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.
Software für Sony-E-Book-Reader
Computer/Laptop mit Unix oder Linux
Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.