Beschreibung
InhaltsangabeIX Elemente der Maßtheorie.- 1 Meßbare Räume.- 2 Maße.- 3 Äußere Maße.- Meßbare Mengen.- Das Lebesguesche Maß.- X Integrationstheorie.- 1 Meßbare Funktionen.- 2 Integrierbare Funktionen.- 3 Konvergenzsätze.- 4 Die Lebesgueschen Räume.- 5 Das n-dimensionale Bochner-Lebesguesche Integral.- 6 Der Satz von Fubini.- 7 Die Faltung.- 8 Der Transformationssatz.- 9 Die Fouriertransformation.- XI Mannigfaltigkeiten und Differentialformen.- 1. Untermannigfaltigkeiten.- 2 Multilineare Algebra.- 3 Die lokale Theorie der Differentialformen.- 4 Vektorfelder und Differentialformen.- 5 Riemannsche Metriken.- 6 Vektoranalysis.- XII Integration auf Mannigfaltigkeiten.- 1 Volumenmaße.- 2 Integration von Differentialformen.- 3 Der Satz von Stokes.- Literaturverzeichnis.- Index.
Inhalt
IX Elemente der Maßtheorie.- 1 Meßbare Räume.- 2 Maße.- 3 Äußere Maße.- Meßbare Mengen.- Das Lebesguesche Maß.- X Integrationstheorie.- 1 Meßbare Funktionen.- 2 Integrierbare Funktionen.- 3 Konvergenzsätze.- 4 Die Lebesgueschen Räume.- 5 Das n-dimensionale Bochner-Lebesguesche Integral.- 6 Der Satz von Fubini.- 7 Die Faltung.- 8 Der Transformationssatz.- 9 Die Fouriertransformation.- XI Mannigfaltigkeiten und Differentialformen.- 1. Untermannigfaltigkeiten.- 2 Multilineare Algebra.- 3 Die lokale Theorie der Differentialformen.- 4 Vektorfelder und Differentialformen.- 5 Riemannsche Metriken.- 6 Vektoranalysis.- XII Integration auf Mannigfaltigkeiten.- 1 Volumenmaße.- 2 Integration von Differentialformen.- 3 Der Satz von Stokes.- Literaturverzeichnis.- Index.
Informationen gemäß Produktsicherheitsverordnung
Hersteller:
Springer Basel AG in Springer Science + Business Media
juergen.hartmann@springer.com
Heidelberger Platz 3
DE 14197 Berlin