Stochastic Processes in Quantum Physics

Monographs in Mathematics 94

160,49 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9783764362089
Sprache: Englisch
Umfang: vii, 598 S.
Auflage: 1. Auflage 2000
Einband: gebundenes Buch

Beschreibung

InhaltsangabeI Markov Processes.- 1.1 Classical Mechanics.- 1.2 Movement of a Particle with Noise.- 1.3 Transition Probability and the Markov Property.- 1.4 Diffusion Equations.- 1.5 Brownian Motions.- 1.6 The Itô formula.- Appendix. Monotone Lemmas.- II Time Reversal and Duality.- 2.1 Time Reversal of Markov Processes and Duality.- 2.2 Space-Time Markov Processes and Space-Time Duality.- 2.3 Time Reversal and Schrödinger's Representation.- III Non-Relativistic Quantum Theory.- 3.1 Non-Relativistic Equation of Motion.- 3.2 Stationary States and Eigenvalue Problem.- 3.3 Time Reversal of Diffusion Processes.- 3.4 Duality Relation of Diffusion Processes.- 3.5 Equation of Motion in General Cases.- 3.6 Principle of Superposition of Markov Processes.- 3.7 Non-Relativistic Schrödinger Equation.- 3.8 State Preparations and Measurements.- 3.9 Diffusion or Schrödinger Equations ?.- 3.10 The First Technical Convention.- IV Stationary Schrödinger Processes.- 4.1 Stationary States.- 4.2 One-Dimensional Harmonic Oscillator.- 4.3 An Example in Two-Dimension.- 4.4 Superposition of Eigenfunctions.- 4.5 Further Excited States.- 4.6 Hydrogen Atom.- V Construction of the Schrödinger Processes.- 5.1 The Feynman-Kac Formula.- 5.2 Solving the Equation of Motion.- 5.3 Transformation by Multiplicative Functionals.- 5.4 Renormalization.- 5.5 A Variational Method.- 5.6 The Maruyama-Girsanov Formula.- 5.7 A Lagrangian Formulation.- 5.8 The Second Technical Convention.- VI Markov Processes with Jumps.- 6.1 Poisson and Compound Poisson Processes.- 6.2 Poisson Random measures and Point Processes.- 6.3 Stochastic Integrals with Poisson Point Processes.- 6.4 Lévy Processes.- 6.5 Stable Processes.- 6.6 Bochner's Subordination.- 6.7 Duality of Subordinate Semi-Groups.- 6.8 Harmonic Transformation of Subordinate Semi-Groups.- 6.9 Duality of Fractional Powers of Time-Dependent Operators.- VII Relativistic Quantum Particles.- 7.1 A Relativistic Schrödinger Equation for a Spinless Paticle.- 7.2 Equation of Motion for Relativistic Quantum Particles.- 7.3 Stationary States of the Relativistic Schrödinger Equation.- 7.4 Stochastic Processes for Relativistic Spinless Particles.- 7.5 Non-Relativistic Limit.- 7.6 A Diffusion Approximation.- VIII Stochastic Differential Equations of Pure-Jumps.- 8.1 Markov Processes with the Generators of Fractional Power.- 8.2 Stochastic Differential Equations of Pure-Jumps.- 8.3 The Case with no Potential Term.- 8.4 To Solve the Stochastic Differential Equations of Pure-Jumps.- 8.5 To Construct Pure-Jump Markov Processes.- 8.6 A Remark on the Integrability Condition.- IX Variational Principle for Relativistic Quantum Particles.- 9.1 Absolute Continuity.- 9.2 Pure-Jump Markov Processes.- 9.3 A Multiplicative Functional.- 9.4 Renormalization and Variational Principle.- X Time Dependent Subordination and Markov Processes with Jumps.- 10.1 Time-Inhomogeneous Subordination.- 10.2 Lemmas.- 10.3 Stochastic Differential Equation with Jumps.- 10.4 A Formula of Feynman-Kac Type.- 10.5 Markov Processes with Jumps.- Appendix. Integration by Parts Formulae.- XI Concave Majorants of Lévy Processes and the Light Cone.- 14.1 The Vertex Process of a Lévy Process.- 14.2 Propositions on Random walks.- 14.3 Proof of Propositions on Random Walks.- 14.4 Proof of the main Theorems.- 14.5 Examples.- 14.6 The light Cone.- XII The Locality in Quantum Physics.- 12.1 Historical Overview.- 12.2 Hidden-Variable Theories.- 12.3 Locality of Hidden-Variable Theories.- 12.4 Spin-Correlation of Three Particles.- 12.5 Gudder's Hidden-Variable Theory.- 12.6 Spin-Correlations in Gudder's Theory.- 12.7 Some Remarks.- XIII Micro Statistical Theory.- 13.1 The Source of the Noise.- 13.2 Large Deviations of the Renormalized Processes.- 13.3 The Propagation of Chaos.- 13.4 Micro Statistical Mechanics.- 13.5 Propagation of Chaos of Pure-Jump Processes.- 13.6 Superposition of Movements.- 12.7 A Remark on the Gibbs Distribution.- XIV Processes on Open Time Intervals.- 14.1 Diffusion Processes on