Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn

eBook - Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics

19,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9783747502143
Sprache: Deutsch
Umfang: 768 S., 59.57 MB
Auflage: 3. Auflage 2021
E-Book
Format: PDF
DRM: Nicht vorhanden

Beschreibung

Datenanalyse mit ausgereiften statistischen Modellen des Machine LearningsAnwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und MatplotlibBest Practices zur Optimierung Ihrer Machine-Learning-Algorithmen

Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.

Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.

Ein sicherer Umgang mit Python wird vorausgesetzt.

Aus dem Inhalt:

Trainieren von Lernalgorithmen und Implementierung in PythonGängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random ForestNatural Language Processing zur Klassifizierung von FilmbewertungenClusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren DatenDeep-Learning-Verfahren für die BilderkennungDatenkomprimierung durch DimensionsreduktionTraining Neuronaler Netze und GANs mit TensorFlow 2Kombination verschiedener Modelle für das Ensemble LearningEinbettung von Machine-Learning-Modellen in WebanwendungenStimmungsanalyse in Social NetworksModellierung sequenzieller Daten durch rekurrente Neuronale NetzeReinforcement Learning und Implementierung von Q-Learning-Algorithmen

Autorenportrait

Sebastian Raschka ist Assistant Professor für Statistik an der University of Wisconsin-Madison, wo er an der Entwicklung neuer Deep-Learning-Architekturen im Gebiet der Biometrie forscht. Er leitete verschiedene Seminare u.a. auf der SciPy-Konferenz.

Vahid Mirjalili erforschte mehrere Jahre an der Michigan State University Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten. Heute ist er in der Forschung des Unternehmens 3M im Bereich Machine Learning tätig.

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.