Quantum Field Theory III: Gauge Theory

A Bridge between Mathematicians and Physicists

267,49 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9783642224201
Sprache: Englisch
Umfang: xxxii, 1126 S.
Format (T/L/B): 5 x 24.3 x 16.3 cm
Auflage: 1. Auflage 2011
Einband: gebundenes Buch

Beschreibung

InhaltsangabePrologue.- Part I. The Euclidean Manifold as a Paradigm: 1. The Euclidean Space E3 (Hilbert Space and Lie Algebra Structure).- 2. Algebras and Duality (Tensor Algebra, Grassmann Algebra, Cli_ord Algebra, Lie Algebra).- 3. Representations of Symmetries in Mathematics and Physics.- 4. The Euclidean Manifold E3.- 5. The Lie Group U(1) as a Paradigm in Harmonic Analysis and Geometry.- 6. Infinitesimal Rotations and Constraints in Physics.- 7. Rotations, Quaternions, the Universal Covering Group, and the Electron Spin.- 8. Changing Observers - A Glance at Invariant Theory Based on the Principle of the Correct Index Picture.- 9. Applications of Invariant Theory to the Rotation Group.- 10. Temperature Fields on the Euclidean Manifold E3.- 11. Velocity Vector Fields on the Euclidean Manifold E3.- 12. Covector Fields and Cartan's Exterior Differential - the Beauty of Differential Forms.- Part II. Ariadne's Thread in Gauge Theory:  13. The Commutative Weyl U(1)-Gauge Theory and the Electromagnetic Field.- 14. Symmetry Breaking.- 15. The Noncommutative Yang{Mills SU(N)-Gauge Theory.- 16. Cocycles and Observers.- 17. The Axiomatic Geometric Approach to Bundles.- Part III. Einstein's Theory of Special Relativity: 18. Inertial Systems and Einstein's Principle of Special Relativity.- 19. The Relativistic Invariance of the Maxwell Equations.- 20. The Relativistic Invariance of the Dirac Equation and the Electron Spin.- Part IV. Ariadne's Thread in Cohomology: 21. The Language of Exact Sequences.- 22. Electrical Circuits as a Paradigm in Homology and Cohomology.- 23. The Electromagnetic Field and the de Rham Cohomology.- Appendix.- Epilogue.- References.- List of Symbols.- Index

Schlagzeile

InhaltsangabePrologue.- Part I. The Euclidean Manifold as a Paradigm: 1. The Euclidean Space E3 (Hilbert Space and Lie Algebra Structure).- 2. Algebras and Duality (Tensor Algebra, Grassmann Algebra, Cli_ord Algebra, Lie Algebra).- 3. Representations of Symmetries in Mathematics and Physics.- 4. The Euclidean Manifold E3.- 5. The Lie Group U(1) as a Paradigm in Harmonic Analysis and Geometry.- 6. Infinitesimal Rotations and Constraints in Physics.- 7. Rotations, Quaternions, the Universal Covering Group, and the Electron Spin.- 8. Changing Observers - A Glance at Invariant Theory Based on the Principle of the Correct Index Picture.- 9. Applications of Invariant Theory to the Rotation Group.- 10. Temperature Fields on the Euclidean Manifold E3.- 11. Velocity Vector Fields on the Euclidean Manifold E3.- 12. Covector Fields and Cartan's Exterior Differential - the Beauty of Differential Forms.- Part II. Ariadne's Thread in Gauge Theory:  13. The Commutative Weyl U(1)-Gauge Theory and the Electromagnetic Field.- 14. Symmetry Breaking.- 15. The Noncommutative Yang{Mills SU(N)-Gauge Theory.- 16. Cocycles and Observers.- 17. The Axiomatic Geometric Approach to Bundles.- Part III. Einstein's Theory of Special Relativity: 18. Inertial Systems and Einstein's Principle of Special Relativity.- 19. The Relativistic Invariance of the Maxwell Equations.- 20. The Relativistic Invariance of the Dirac Equation and the Electron Spin.- Part IV. Ariadne's Thread in Cohomology: 21. The Language of Exact Sequences.- 22. Electrical Circuits as a Paradigm in Homology and Cohomology.- 23. The Electromagnetic Field and the de Rham Cohomology.- Appendix.- Epilogue.- References.- List of Symbols.- Index>

Informationen gemäß Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg