Artificial Intelligence in Process Fault Diagnosis

eBook - Methods for Plant Surveillance

157,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9781119825913
Sprache: Englisch
Umfang: 432 S., 8.24 MB
Auflage: 1. Auflage 2024
E-Book
Format: EPUB
DRM: Adobe DRM

Beschreibung

Artificial Intelligence in Process Fault Diagnosis

A comprehensive guide to the future of process fault diagnosis

Automation has revolutionized every aspect of industrial production, from the accumulation of raw materials to quality control inspections. Even process analysis itself has become subject to automated efficiencies, in the form of process fault analyzers, i.e., computer programs capable of analyzing process plant operations to identify faults, improve safety, and enhance productivity. Prohibitive cost and challenges of application have prevented widespread industry adoption of this technology, but recent advances in artificial intelligence promise to place these programs at the center of manufacturing process analysis.

Artificial Intelligence in Process Fault Diagnosisbrings together insights from data science and machine learning to deliver an effective introduction to these advances and their potential applications. Balancing theory and practice, it walks readers through the process of choosing an ideal diagnostic methodology and the creation of intelligent computer programs. The result promises to place readers at the forefront of this revolution in manufacturing.

Artificial Intelligence in Process Fault Diagnosisreaders will also find:Coverage of various AI-based diagnostic methodologies elaborated by leading expertsGuidance for creating programs that can prevent catastrophic operating disasters, reduce downtime after emergency process shutdowns, and moreComprehensive overview of optimized best practices

Artificial Intelligence in Process Fault Diagnosisis ideal for process control engineers, operating engineers working with processing industrial plants, and plant managers and operators throughout the various process industries.

Autorenportrait

Richard J. Fickelscherer, PhD,PE has worked on advanced process control and process monitoring programs at DuPont, Exxon, Merck Pharmaceuticals, Koch Industries, and FMC, and has since developed and patented a Fuzzy logic-based compiler program to automate process fault analysis.

Inhalt

List of Contributors xix

Foreward xxi

Preface xxiii

Acknowledgements xxv

1 Motivations for Automating Process Fault Analysis 1

1.1 Introduction 2

1.2 The Changing Role of the Process Operators in Plant Operations 4

1.3 Traditional Methods for Performing Process Fault Management 7

1.4 Limitations of Human Operators in Performing Process Fault Management 8

1.5 The Role of Automated Process Fault Analysis 12

2 Various Process Fault Diagnostic Methodologies 16

2.1 Introduction 17

2.2 Various Alternative Diagnostic Strategies Overview 18

2.3 Diagnostic Methodology Choice Conclusions 35

2.A Failure Modes and Effects Analysis 40

3 Alarm Management and Fault Detection 45

3.1 Introduction 46

3.2 Applicable Definitions and Guidelines 46

3.3 The Alarm Management Life Cycle 49

3.4 Generation of Diagnostic Information 53

3.5 Presentation of the Diagnostic Information 55

3.6 Information Rates 59

4 Operator Performance: Simulation and Automation 63

4.1 Background 63

4.2 Automation 65

4.3 Simulation 68

4.4 Research 69

4.5 AI Integration 73

4.6 Case Study: Turbo Expanders Over-Speed 77

4.7 Human-Centered AI 80

5 AI and Alarm Analytics for Failure Analysis and Prevention 85

5.1 Introduction 86

5.2 Post-Alarm Assessment and Analysis 87

5.3 Real-Time Alarm Activity Database and Operator Action Journal 89

5.4 Pre-Alarm Assessment and Analysis 91

5.5 Utilizing Alarm Assessment Information 92

5.6 Examining the Alarm System to Resolve Failures on a Wider Scale 93

5.7 Emerging Methods of Alarm Analysis 99

5.8 Deep Reinforcement Learning for Alarming and Failure Assessment 103

5.9 Some Typical AI and Machine Learning Examples for Further Study 103

5.10 Wrap-Up 111

5.A Process State Transition Logic Employed by the Original FMC Falconeer KBS 112

5.B Process State Transition Logic and its Routine Use in Falconeer IV 123

6 Process Fault Detection Based on Time-Explicit Kiviat Diagram 131

6.1 Introduction 132

6.2 Time-Explicit Kiviat Diagram 133

6.3 Fault Detection Based on the Time-Explicit Kiviat Diagram 134

6.4 Continuous Processes 136

6.5 Batch Processes 138

6.6 Periodic Processes 140

6.7 Case Studies 141

6.8 Continuous Processes 141

6.9 Batch Processes 144

6.10 Periodic Processes 147

6.11 Conclusions 149

6.A Virtual Statistical Process Control Analysis 151

7 Smart Manufacturing and Real-Time Chemical Process Health Monitoring and Diagnostic Localization 160

7.1 Introduction to Process Operational Health Modeling 163

7.2 Diagnostic Localization Key Concepts 165

7.3 Time 178

7.4 The Workflow of Diagnostic Localization 184

7.5 DL-CLA Use Case Implementation: Nova Chemical Ethylene Splitter 191

7.6 Analyzing Potential Malfunctions Over Time 198

7.7 Analysis of Various Operational Scenarios 201

7.8 DL-CLA Integration with Smart Manufacturing (SM) 208

7.9 AN FR Model Library 210

7.10 Conclusions 216

8 Optimal Quantitative Model-Based Process Fault Diagnosis 221

8.1 Introduction 222

8.2 Process Fault Analysis Concept Terminology 223

8.3 MOME Quantitative Models Overview 226

8.4 MOME Quantitative Model Diagnostic Strategy 234

8.5 MOME SV&PFA Diagnostic Rules Logic Compiler Motivations 248

8.6 MOME Fuzzy Logic Algorithm Overview 250

8.7 Summary of the Mome Diagnostic Strategy 265

8.8 Actual Process System KBS Application Performance Results 266

8.9 Conclusions 267

8.A Falconeer IV Fuzzy Logic Algorithm Pseudo-Code 272

8.B Mome Conclusions 281

9 Fault Detection Using Artificial Intelligence and Machine Learning 286

9.1 Introduction 287

9.2 Artificial Intelligence 287

9.3 Machine Learning 288

9.4 Engineered Features 290

9.5 Machine Learning Algorithms 291

10 Knowledge-Based Systems 300

10.1 Introduction 301

10.2 Knowledge 301

10.3 Information Required for Diagnosis 304

10.4 Knowledge Representation 305

10.5 Maintaining, Updating, and Extending Knowledge 309

10.6 Expert Systems 311

10.7 Digitization, Digitalization, Digital Transformation, and Digital Twins 319

10.8 Fault Diagnosis with Knowledge-Based Systems 322

10.9 Graphical Representation of Fault Diagnosis 325

10.10 Conclusions 337

10.A Compressor Trip Prediction 340

11 The Falcon Project 343

11.1 Introduction 344

11.2 The Diagnostic Philosophy Underlying the Falcon System 345

11.3 Target Process System 346

11.4 The Fielded Falcon System 348

11.5 The Derivation of the FALCON Diagnostic Knowledge Base 355

11.6 The Ideal FALCON System 369

11.7 Use of the Knowledge-Based System Paradigm in Problem

12 Fault Diagnostic Application Implementation and Sustainability 374

12.1 Key Principles of Successfully Implementing New Technology 375

12.2 Expectation of Advanced Technology 376

12.3 Defining Success 379

12.4 Learning from History 379

12.5 Example: Regulatory Control Loop Monitoring 380

12.6 What Success Looks Like 385

12.7 Example: Systematic Stewardship 386

12.8 Conclusions 387

13 Process Operators, Advanced Process Control, and Artificial Intelligence-Based Applications in the Control Room 389

13.1 Introduction 391

13.2 History of Sustainable APC 392

13.3 Operators as Ultimate APC Application End Users 394

13.4 APC Application Design Considerations 395

13.5 APC Development Internal Versus External Experts 398

13.6 APC Technology 398

13.7 APC Support 400

13.8 Conclusions 402

References 402

Index 404

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.