Beschreibung
Inhaltsangabe1. Introduction1.1. History of polysaccharides from bacteria1.2. Cyclic ß-glucans1.3. a-cyclic glucan1.4. Linear glucans1.5. Cyclodextrins 2. Applications of cyclic ß-glucans2.1. In food 2.2. Medical technology2.3. As wound dressing material2.4. Microparticulate form of ß-glucan for pharmaceutical application2.5. Synthesis of selenium nanowires2.6. Drug delivery 2.7. Enantiomeric seperator2.8. In chiral technology2.9. Chiral Stationary Phase 2.10. Carboxymethylated cyclic- ß-glucans as enantiomeric separators2.11. Inclusion complexes2.12. ß-D-Glucans complexation with Zearalenone2.13. Inclusion complex with Paclitaxel2.14. Inclusion complexation with a plant flavonoid luteolin2.15. Inclusion complexation with naproxen2.16. Functionalized ß-1, 3-Glucan in carbon nanotube2.17. Application of cyclic ß-(1, 3),(1, 6)-glucans in chiral technology 3. Properties of cyclic glucans3.1. Structure3.2. Molecular biological function of ß-Glucans in immunity3.2.1 The ß-Glucan receptor - Dectin-13.3. Complex forming ability3.4. Cytotoxicity of cyclic ß-glucan 4. Analytical tools for the characterization cyclic ß-glucan4.1. Silica gel thin-layer chromatography (TLC)4.2. Degree of polymerization 4.3. Compositional analysis of periplasmic glucan4.4. Glycosidic - linkage analysis4.5. Arrangement of linkages4.6. Protons and carbons in glucan4.7. Molecular weight4.8. Functional groups in cyclic ß-glucans4.9. Supramolecular structure4.10. Separation of mixture of cyclic-ß- glucan in HPLC4.11. CHN analysis 5. Production of Cyclic ß-glucans5.1. Osmolarity condition 5.2. Media details 5.3. Optimization of medium with mannitol5.4. Effect of media components and operating conditions 5.4.1. Carbon 5.4.2. Nitrogen 5.4.3. Temperature5.4.4. Salt and pH 6. Extraction and purification of cyclic ß- glucan 6.1. Extraction of cyclic ß- glucan from culture filtrate6.2. Isolation and purification of osmoregulated periplasmic glucans 6.3. Isolation and purification of algal cyclic glucans6.4. Purification of cyclic glucan from yeast6.5. Purification using column chromatography 7. Mechanism of cyclic ß-glucans production7.1. Genes responsible for synthesis of cyclic ß-(1, 2)-glucan in Rhizobiaceae and Agrobacteriaceae7. 1.2. Genes for cyclic ß-(1,3)7. 1.3. Genes for cyclic ß-(1,3)-(1,6)-glucan7. 1. 4. Genes for cyclic ß-(1,6)-(1,3)-glucan7. 2. Genes of periplasmic glucans (PGs) of the Proteobacteria7.3. Metabolic pathway of carbohydrate metabolism 7.4. Enzymes involved in Cyclic ß- (1,2)-glucan synthesis7.4.1. Cyclic ß-glucan synthase (Cßgs)7.4.2. ß- (1, 3), ß-(1,6)-(1,3) and ß-(1,3)-(1,6) glucosyltransferase7.4.3. Enzymes involved in ß-glucan degradation 8. Conclusions
Autorenportrait
Inhaltsangabe1. Introduction 1.1. History of polysaccharides from bacteria 1.2. Cyclic ß-glucans 1.3. acyclic glucan 1.4. Linear glucans 1.5. Cyclodextrins 2. Applications of cyclic ß-glucans 2.1. In food 2.2. Medical technology 2.3. As wound dressing material 2.4. Microparticulate form of ß-glucan for pharmaceutical application 2.5. Synthesis of selenium nanowires 2.6. Drug delivery 2.7. Enantiomeric seperator 2.8. In chiral technology 2.9. Chiral Stationary Phase 2.10. Carboxymethylated cyclic- ß-glucans as enantiomeric separators 2.11. Inclusion complexes 2.12. ßDGlucans complexation with Zearalenone 2.13. Inclusion complex with Paclitaxel 2.14. Inclusion complexation with a plant flavonoid luteolin 2.15. Inclusion complexation with naproxen 2.16. Functionalized ß-1, 3-Glucan in carbon nanotube 2.17. Application of cyclic ß-(1, 3),(1, 6)-glucans in chiral technology 3. Properties of cyclic glucans 3.1. Structure 3.2. Molecular biological function of ß-Glucans in immunity 3.2.1 The ßGlucan receptor Dectin1 3.3. Complex forming ability 3.4. Cytotoxicity of cyclic ß-glucan 4. Analytical tools for the characterization cyclic ß-glucan 4.1. Silica gel thin-layer chromatography (TLC) 4.2. Degree of polymerization 4.3. Compositional analysis of periplasmic glucan 4.4. Glycosidic - linkage analysis 4.5. Arrangement of linkages 4.6. Protons and carbons in glucan 4.7. Molecular weight 4.8. Functional groups in cyclic ß-glucans 4.9. Supramolecular structure 4.10. Separation of mixture of cyclic-ß- glucan in HPLC 4.11. CHN analysis 5. Production of Cyclic ß-glucans 5.1. Osmolarity condition 5.2. Media details 5.3. Optimization of medium with mannitol 5.4. Effect of media components and operating conditions 5.4.1. Carbon 5.4.2. Nitrogen 5.4.3. Temperature 5.4.4. Salt and pH 6. Extraction and purification of cyclic ß- glucan 6.1. Extraction of cyclic ß- glucan from culture filtrate 6.2. Isolation and purification of osmoregulated periplasmic glucans 6.3. Isolation and purification of algal cyclic glucans 6.4. Purification of cyclic glucan from yeast 6.5. Purification using column chromatography 7. Mechanism of cyclic ß-glucans production 7.1. Genes responsible for synthesis of cyclic ß-(1, 2)-glucan in Rhizobiaceae and Agrobacteriaceae 7. 1.2. Genes for cyclic ß-(1,3) 7. 1.3. Genes for cyclic ß-(1,3)-(1,6)-glucan 7. 1. 4. Genes for cyclic ß-(1,6)-(1,3)-glucan 7. 2. Genes of periplasmic glucans (PGs) of the Proteobacteria 7.3. Metabolic pathway of carbohydrate metabolism 7.4. Enzymes involved in Cyclic ß- (1,2)-glucan synthesis 7.4.1. Cyclic ß-glucan synthase (Cßgs) 7.4.2. ß (1, 3), ß(1,6)(1,3) and ß(1,3)(1,6) glucosyltransferase 7.4.3. Enzymes involved in ß-glucan degradation 8. Conclusions
Informationen gemäß Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg