Solar Fuels

eBook - Advances in Solar Cell Materials and Storage

190,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9781119752073
Sprache: Englisch
Umfang: 400 S., 36.50 MB
Auflage: 1. Auflage 2023
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

SOLAR FUELS

In this book, you will have the opportunity to have comprehensive knowledge about the use of energy from the sun, which is our source of life, by converting it into different chemical fuels as well as catching up with the latest technology.

The most important obstacle to solar meeting all our energy needs is that solar energy is not always accessible and, therefore, cannot be used when needed. Consequently, the conversion of solar energy into chemical energy, which has become increasingly important in recent years, is a groundbreaking topic in the field of renewable energy. This type of chemical energy is called solar fuel. Hydrogen, methanol, methane, and carbon monoxide are among the solar fuels, which can be produced via solar-thermal, artificial photosynthesis, photocatalytic or photoelectrochemical routes.Solar Fuels compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar fuel generation. Chapters are written by distinguished authors who have extensive experience in their fields. A multidisciplinary contributor profile, including chemical engineering, materials science, environmental engineering, and mechanical and aerospace engineering provides a broader point of view and coverage of the topic. Therefore, readers absolutely will have a chance to learn about not only the fundamentals, but also the various aspects of materials science and manufacturing technologies for solar fuel production. Moreover, readers from diverse fields should take advantage of this book to comprehend the impacts of solar energy conversion in chemical form.

Audience

The book will be of interest to a multidisciplinary group of fields in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrochemistry, electrical engineering, and mechanical and manufacturing engineering.

Autorenportrait

Nurdan Demirci Sankir, PhD, is a full professor in the Materials Science and Nanotechnology Engineering Department at the TOBB University of Economics and Technology (TOBB ETU), Ankara, Turkey. She received her M.Eng and PhD degrees in Materials Science and Engineering from the Virginia Polytechnic and State University, the USA, in 2005. She established the Energy Research and Solar Cell Laboratories at TOBB ETU, and her research interests include photovoltaic devices, solution-based thin-film manufacturing, solar-driven water splitting, photocatalytic degradation, and nanostructured semiconductors. This is her sixth co-edited book with the Wiley-Scrivener imprint.

Mehmet Sankir, PhD, is a full professor in the Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey, and group leader of the Advanced Membrane Technologies Laboratory. He received his PhD degree in Macromolecular Science and Engineering from the Virginia Polytechnic and State University, the USA, in 2005. Dr. Sankirs research interests include membranes for fuel cells, flow batteries, hydrogen generation, and desalination. This is his sixth co-edited book with the Wiley-Scrivener imprint.

Inhalt

Preface xiii

Part I: Solar Thermochemical and Concentrated Solar Approaches 1

1 Materials Design Directions for Solar Thermochemical Water Splitting 3
Robert B. Wexler, Ellen B. Stechel and Emily A. Carter

1.1 Introduction 4

1.1.1 Hydrogen via Solar Thermolysis 7

1.1.2 Hydrogen via Solar Thermochemical Cycles 8

1.1.3 Thermodynamics 13

1.1.4 Economics 16

1.2 Theoretical Methods 17

1.2.1 Oxygen Vacancy Formation Energy 18

1.2.2 Standard Entropy of Oxygen Vacancy Formation 22

1.2.3 Stability 24

1.2.4 Structure 25

1.2.5 Kinetics 26

1.3 The State-of-the-Art Redox-Active Metal Oxide 26

1.4 Next-Generation Perovskite Redox-Active Materials 30

1.5 Materials Design Directions 33

1.5.1 Enthalpy Engineering 33

1.5.2 Entropy Engineering 37

1.5.3 Stability Engineering 41

1.6 Conclusions 42

Acknowledgments 42

Appendices 43

Appendix A. Equilibrium Composition for Solar Thermolysis 43

Appendix B. Equilibrium Composition of Ceria 44

References 46

2 Solar Metal Fuels for Future Transportation 65
Youssef Berro and Marianne Balat-Pichelin

2.1 Introduction 66

2.1.1 Sustainable Strategies to Address Climate Change 66

2.1.2 Circular Economy 66

2.1.3 Sustainable Solar Recycling of Metal Fuels 68

2.2 Direct Combustion of Solar Metal Fuels 69

2.2.1 Stabilized Metal-Fuel Flame 70

2.2.2 Combustion Engineering 71

2.2.3 Designing Metal-Fueled Engines 72

2.3 Regeneration of Metal Fuels Through the Solar Reduction of Oxides 75

2.3.1 Thermodynamics and Kinetics of Oxides Reduction 75

2.3.2 Effect of Some Parameters on the Reduction Yield 77

2.3.2.1 Carbon-Reducing Agent 77

2.3.2.2 Catalysts and Additives 78

2.3.2.3 Mechanical Milling 78

2.3.2.4 CO Partial Pressure 79

2.3.2.5 Carrier Gas 79

2.3.2.6 Fast Preheating 79

2.3.2.7 Progressive Heating 80

2.3.3 Reverse Reoxidation of the Produced Metal Powders 80

2.3.4 Reduction of Oxides Using Concentrated Solar Power 81

2.3.5 Solar Carbothermal Reduction of Magnesia 83

2.3.6 Solar Carbothermal Reduction of Alumina 86

2.4 Conclusions 89

Acknowledgments 90

References 90

3 Design Optimization of a Solar Fuel Production Plant by Water Splitting With a Copper-Chlorine Cycle 97
Samane Ghandehariun, Shayan Sadeghi and Greg F. Naterer

Nomenclature 98

3.1 Introduction 100

3.2 System Description 108

3.3 Mathematical Modeling and Optimization 113

3.3.1 Energy and Exergy Analyses 113

3.3.2 Economic Analysis 116

3.3.3 Multiobjective Optimization (MOO) Algorithm 120

3.4 Results and Discussion 121

3.5 Conclusions 130

References 131

4 Diversifying Solar Fuels: A Comparative Study on Solar Thermochemical Hydrogen Production Versus Solar Thermochemical Energy Storage Using Co3O4 137
Atalay Calisan and Deniz Uner

4.1 Introduction 137

4.2 Materials and Methods 141

4.3 Thermodynamics of Direct Decomposition of Water 142

4.4 A Critical Analysis of Two-Step Thermochemical Water Splitting Cycles Through the Red/Ox Properties of Co3O4143

4.4.1 Red/Ox Characteristics of Co3O4Measured by Temperature-Programmed Analysis 145

4.4.2 The Role of Pt as a Reduction Promoter of Co3O4147

4.4.3 A Critical Analysis of the Solar Thermochemical Cycles of Water Splitting 149

4.5 Cyclic Thermal Energy Storage Using Co3O4151

4.5.1 Mass and Heat Transfer Effects During Red/Ox Processes 152

4.5.2 Cyclic Thermal Energy Storage Performance of Co3O4152

4.6 Conclusions 157

Acknowledgements 157

References 157

Part II: Artificial Photosynthesis and Solar Biofuel Production 161

5 Shedding Light on the Production of Biohydrogen from Algae 163
Thummala Chandrasekhar and Vankara Anuprasanna

5.1 Introduction 164

5.2 Hydrogen or Biohydrogen as Source of Energy 165

5.3 Hydrogen Production From Various Resources 167

5.4 Mechanism of Biological Hydrogen Production from Algae 168

5.5 Production of Hydrogen from Different Algal Species 171

5.5.1 Generation of Hydrogen in Scenedesmus obliquus 171

5.5.2 Production of Hydrogen in Chlorella vulgaris 174

5.5.3 Generation of Hydrogen in Model AlgaChlamydomonas reinhardtii 175

5.6 Concluding Remarks 177

Acknowledgments 177

References 177

6 Photoelectrocatalysis Enables Greener Routes to Valuable Chemicals and Solar Fuels 185
Dipesh Shrestha, Kamal Dhakal, Tamlal Pokhrel, Achyut Adhikari, Tomas Hardwick, Bahareh Shirinfar and Nisar Ahmed

6.1 Introduction 186

6.2 CH Functionalization in Complex Organic Synthesis 189

6.3 Examples of Photoelectrochemical-Induced CH Activation 190

6.4 CC Functionalization 192

6.5 Electrochemically Mediated Photoredox Catalysis (e-PRC) 194

6.6 Interfacial Photoelectrochemistry (iPEC) 197

6.7 Reagent-Free Cross Dehydrogenative Coupling 199

6.8 Conclusion 199

References 200

Part III: Photocatalytic CO2 Reduction to Fuels 205

7 Graphene-Based Catalysts for Solar Fuels 207
Zhou Zhang, Maocong Hu and Zhenhua Yao

7.1 Introduction 208

7.2 Preparation of Graphene and Its Composites 209

7.2.1 Preparation of Graphene (Oxide) 209

7.2.2 Preparation of Graphene-Based Photocatalysts 210

7.2.2.1 Hydrothermal/Solvothermal Method 211

7.2.2.2 Sol-Gel Method 212

7.2.2.3 In Situ Growth Method 212

7.3 Graphene-Based Catalyst Characterization Techniques 214

7.3.1 SEM, TEM, and HRTEM 214

7.3.2 X-Ray Techniques: XPS, XRD, XANES, XAFS, and EXAFS 215

7.3.3 Atomic Force Microscopy (AFM) 217

7.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 218

7.3.5 Other Technologies 219

7.4 Graphene-Based Catalyst Performance 220

7.4.1 Photocatalytic CO2 Reduction 223

7.4.2 Hydrogen Production by Water Splitting 229

7.5 Conclusion and Future Opportunities 235

Acknowledgments 237

References 237

8 Advances in Design and Scale-Up of Solar Fuel Systems 247
Ashween Virdee and John Andresen

8.1 Introduction 248

8.2 Strategies for Solar Photoreactor Design 248

8.2.1 Photocatalytic Systems 249

8.2.1.1 Slurry Photoreactor 252

8.2.1.2 Fixed Bed Photoreactor 254

8.2.1.3 Twin Photoreactor (Membrane Photoreactor) 256

8.2.1.4 Microreactor 259

8.2.2 Electrochemical System 260

8.2.2.1 Co2 Electrochemical Reactors 263

8.2.3 Photoelectrochemical (PEC) Systems 267

8.3 Design Considerations for Scale-Up 272

8.4 Future Systems and Large Reactors 274

8.5 Conclusions 276

References 277

Part IV: Solar-Driven Water Splitting 285

9 Photocatalyst Perovskite Ferroelectric Nanostructures 287
Debashish Pal, Dipanjan Maity, Ayan Sarkar and Gobinda Gopal Khan

9.1 Introduction 288

9.2 Ferroelectric Properties and Materials 289

9.3 Fundamental of Photocatalysis and Photoelectrocatalysis 290

9.3.1 Photocatalytic Production of Hydrogen Fuel 290

9.3.2 Photoelectrocatalytic Hydrogen Production 291

9.3.3 Photocatalytic Dye/Pollutant Degradation 292

9.4 Principle of Piezo/Ferroelectric Photo(electro)catalysis 292

9.5 Ferroelectric Nanostructures for Photo(electro)catalysis 294

9.6 Synthesis and Design of Nanostructured Ferroelectric Photo(electro)catalysts 295

9.6.1 Hydrothermal/Solvothermal Methods 295

9.6.2 Sol-Gel Methods 300

9.6.3 Wet Chemical and Solution Methods 303

9.6.4 Vapor Phase Deposition Methods 305

9.6.5 Electrospinning Methods 306

9.7 Photo(electro)catalytic Activities of Ferroelectric Nanostructures 307

9.7.1 Photo(electro)catalytic Activities of BiFeO3 Nanostructures and Thin Films 307

9.7.2 Photo(electro)catalytic Activities of LaFeO3 Nanostructures 311

9.7.3 Photo(electro)catalytic Activities of BaTiO3 Nanostructures 314

9.7.4 Photo(electro)catalytic Activities of SrTiO3 Nanostructures 317

9.7.5 Photo(electro)catalytic Activities of YFeO3 Nanostructures 319

9.7.6 Photo(electro)catalytic Activities of KNbO3 Nanostructures 319

9.7.7 Photo(electro)catalytic Activities of NaNbO3 Nanostructures 322

9.7.8 Photo(electro)catalytic Activities of LiNbO3 Nanostructures 323

9.7.9 Photo(electro)catalytic Activities of PbTiO3 Nanostructures 323

9.7.10 Photo(electro)catalytic Activities of ZnSnO3 Nanostructures 325

9.8 Conclusion and Perspective 327

References 329

10 SolarDriven H2 Production in PVE Systems 341
Zaki N. Zahran, Yuta Tsubonouchi and Masayuki Yagi

10.1 Introduction 342

10.2 Approaches for H2 Production via Solar-Driven Water Splitting 343

10.3 Principle of Designing of PVE Systems for Solar-Driven Water Splitting 348

10.4 Development of PVE Systems for Solar-Driven Water Splitting 352

10.4.1 PVE Systems Based on Si PV Cells 353

10.4.2 PVE Systems Based on Group III-V Compound PV Cells 354

10.4.3 PVE Systems Based on Chalcogenide PV Cells 356

10.4.4 PVE Systems Based on Perovskite PV Cells 358

10.4.5 PVE Systems Based on Organic Heterojunction PV Cells 359

10.5 Conclusions and Future Perspective 361

References 361

11 Impactful Role of Earth-Abundant Cocatalysts in Photocatalytic Water Splitting 375
Yubin Chen, Xu Guo, Zhichao Ge, Ya Liu and Maochang Liu

11.1 Introduction 376

11.2 Categories of Cocatalysts Utilized in Photocatalytic Water Splitting 378

11.2.1 Metal and Non-Metal Cocatalysts 379

11.2.2 Metal Oxides and Hydroxides 380

11.2.3 Metal Sulfides 381

11.2.4 Metal Phosphides and Carbides 382

11.2.5 Molecular Cocatalysts 383

11.3 Factors Determining the Cocatalyst Activity 384

11.3.1 Intrinsic Properties of Cocatalysts 384

11.3.2 Interfacial Coupling of Cocatalysts With Host Semiconductors 388

11.4 Advanced Characterization Techniques for Cocatalytic Process 393

11.5 Conclusion 395

Acknowledgments 396

References 396

Index 411

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.