Condensed Matter Physics

145,00 €
(inkl. MwSt.)
In den Warenkorb

Nachfragen

Bibliografische Daten
ISBN/EAN: 9780470617984
Sprache: Englisch
Umfang: 992 S.
Format (T/L/B): 4 x 26 x 18.7 cm
Auflage: 2. Auflage 2010
Einband: gebundenes Buch

Beschreibung

A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.

Inhalt

Preface. References. I ATOMIC STRUCTURE. 1 The Idea of Crystals. 1.1 Introduction. 1.2 Two-Dimensional Lattices. 1.3 Symmetries. 2 Three-Dimensional Lattices. 2.1 Introduction. 2.2 Monatomic Lattices. 2.3 Compounds. 2.4 Classification of Lattices by Symmetry. 2.5 Symmetries of Lattices with Bases. 2.6 Some Macroscopic Implications of Microscopic Symmetries . . . . 3 Scattering and Structures. 3.1 Introduction. 3.2 Theory of Scattering from Crystals. 3.3 Experimental Methods. 3.4 Further Features of Scattering Experiments. 3.5 Correlation Functions. 4 Surfaces and Interfaces. 4.1 Introduction. 4.2 Geometry of Interfaces. 4.3 Experimental Observation and Creation of Surfaces. 5 Beyond Crystals. 5.1 Introduction. 5.2 Diffusion and Random Variables. 5.3 Alloys. 5.4 Simulations. 5.5 Liquids. 5.6 Glasses. 5.7 Liquid Crystals. 5.8 Polymers. 5.9 Colloids and Diffusing-Wave Scattering. 5.10 Quasicrystals. 5.11 Fullerenes and nanotubes. II ELECTRONIC STRUCTURE. 6 The Free Fermi Gas and Single Electron Model. 6.1 Introduction. 6.2 Starting Hamiltonian. 6.3 Densities of States. 6.4 Statistical Mechanics of Noninteracting Electrons. 6.5 Sommerfeld Expansion. 7 Non-Interacting Electrons in a Periodic Potential. 7.1 Introduction. 7.2 Translational Symmetry--Bloch's Theorem. 7.3 Rotational Symmetry--Group Representations. 8 Nearly Free and Tightly Bound Electrons. 8.1 Introduction. 8.2 Nearly Free Electrons. 8.3 Brillouin Zones. 8.4 Tightly Bound Electrons. 9 Electron-Electron Interactions. 9.1 Introduction. 9.2 Hartree and Hartree-Fock Equations. 9.3 Density Functional Theory. 9.4 Quantum Monte Carlo. 9.5 Kohn-Sham Equations. 10 Realistic Calculations in Solids. 10.1 Introduction. 10.2 Numerical Methods. 10.3 Definition of Metals, Insulators, and Semiconductors. 10.4 Brief Survey of the Periodic Table. III MECHANICAL PROPERTIES. 11 Cohesion of Solids. 11.1 Introduction. 11.2 Noble Gases. 11.3 Ionic Crystals. 11.4 Metals. 11.5 Band Structure Energy. 11.6 Hydrogen-Bonded Solids. 11.7 Cohesive Energy from Band Calculations. 11.8 Classical Potentials. 12 Elasticity. 12.1 Introduction. 12.2 Nonlinear Elasticity. 12.3 Linear Elasticity. 12.4 Other Constitutive Laws. 13 Phonons. 13.1 Introduction. 13.2 Vibrations of a Classical Lattice. 13.3 Vibrations of a Quantum-Mechanical Lattice. 13.4 Inelastic Scattering from Phonons. 13.5 The Mössbauer Effect. 14 Dislocations and Cracks. 14.1 Introduction. 14.2 Dislocations. 14.3 Two-Dimensional Dislocations and Hexatic Phases. 14.4 Cracks. 15 Fluid Mechanics. 15.1 Introduction. 15.2 Newtonian Fluids. 15.3 Polymeric Solutions. 15.4 Plasticity. 15.5 Superfluida 4He. IV ELECTRON TRANSPORT. 16 Dynamics of Bloch Electrons. 16.1 Introduction. 16.2 Semiclassical Electron Dynamics. 16.3 Noninteracting Electrons in an Electric Field. 16.4 Semiclassical Equations from Wave Packets. 16.5 Quantizing Semiclassical Dynamics. 17 Transport Phenomena and Fermi Liquid Theory. 17.1 Introduction. 17.2 Boltzmann Equation. 17.3 Transport Symmetries. 17.4 Thermoelectric Phenomena. 17.5 Fermi Liquid Theory. 18 Microscopic Theories of Conduction. 18.1 Introduction. 18.2 Weak Scattering Theory of Conductivity. 18.3 Metal-Insulator Transitions in Disordered ...

Sonstiges

Sonstiges